

Ryton[®] R-7-121BL polyphenylene sulfide

Ryton® R-7-121NA and R-7-121BL glass fiber and mineral filled polyphenylene sulfide compounds provide good mechanical strength with good flow and low maintenance molding using conventional molding equipment.

General

oonorai			
Material Status	Commercial: Active		
Availability	Asia Pacific	 Latin America 	
	• Europe	 North America 	
Filler / Reinforcement	 Glass Fiber \Mineral 		
Features	Good Flow	Good Strength	
Uses	Automotive Applications		
RoHS Compliance	RoHS Compliant		
Appearance	• Black		
Forms	Pellets		
Processing Method	Injection Molding		

Physical	Typical Value	Unit	Test method
Density / Specific Gravity	1.95		ASTM D792
Molding Shrinkage			ISO 294-4
Across Flow : 3.20 mm	0.40	%	
Flow : 3.20 mm	0.20	%	
Water Absorption			
24 hr, 23°C	0.016	%	ISO 62
Saturation, 23°C	0.13	%	Internal Method
Mechanical	Typical Value	Unit	Test method
Tensile Modulus			ISO 527-2
	19200	MPa	
1	19600	MPa	
Tensile Stress			
	125	MPa	ISO 527-2
	117	MPa	ASTM D638
1	128	MPa	ISO 527-2
Tensile Strain			
Break	0.90	%	ISO 527-2 ASTM D638
Break ¹	1.1	%	ISO 527-2
Flexural Modulus			
	18000	MPa	ISO 178
	17200	MPa	ASTM D790

Mechanical	Typical Value Unit	Test method
Flexural Stress		
	195 MPa	ISO 178
	200 MPa	ASTM D790
Compressive Strength	285 MPa	ASTM D695
Poisson's Ratio	0.36	ISO 527
Impact	Typical Value Unit	Test method
Charpy Notched Impact Strength		ISO 179
	5.1 kJ/m ²	
1	6.0 kJ/m²	
Charpy Unnotched Impact Strength	17 kJ/m²	ISO 179
Notched Izod Impact		
3.18 mm	53 J/m	ASTM D256
	6.0 kJ/m²	ISO 180/A
Unnotched Izod Impact		
3.18 mm	210 J/m	ASTM D4812
	14 kJ/m²	ISO 180
Hardness	Typical Value Unit	Test method
Rockwell Hardness		ASTM D785
M-Scale	101	
R-Scale	118	
Thermal	Typical Value Unit	Test method
Deflection Temperature Under Load		ASTM D648
1.8 MPa, Unannealed	265 °C	
Melting Temperature	280 °C	ISO 11357-3
CLTE		ASTM E831
Flow : -50 to 50°C	1.5E-5 cm/cm/°C	2
Flow : 100 to 200°C	1.5E-5 cm/cm/°C	2
Transverse : -50 to 50°C	3.0E-5 cm/cm/°C	2
Transverse : 100 to 200°C	7.0E-5 cm/cm/°C	2
Thermal Conductivity	0.58 W/m/K	Internal Method
UL Temperature Rating	220 to 240 °C	UL 746B
Electrical	Typical Value Unit	Test method
Surface Resistivity	1.0E+16 ohms	ASTM D257
Volume Resistivity	1.0E+15 ohms·cm	ASTM D257
Dielectric Strength	18 kV/mm	ASTM D149
Dielectric Constant		ASTM D150
25°C, 1 kHz	4.80	
25°C, 1 MHz	4.90	
Dissipation Factor		ASTM D150
25°C, 1 kHz	4.0E-3	
	2.0E-3	

Electrical	Typical Value Unit	Test method
Arc Resistance	185 sec	ASTM D495
Comparative Tracking Index (CTI)	PLC 2	UL 746A
Insulation Resistance ² (90°C)	1.0E+11 ohms	Internal Method
Flammability	Typical Value Unit	Test method
Flame Rating (0.8 mm)	• V-0 • 5VA	UL 94
Oxygen Index	61 %	ASTM D2863
Injection	Typical Value Unit	
Drying Temperature	135 to 150 °C	
Drying Time	2.0 to 4.0 hr	
Rear Temperature	295 to 315 °C	
Middle Temperature	305 to 325 °C	
Front Temperature	315 to 345 °C	
Nozzle Temperature	305 to 325 °C	
Processing (Melt) Temp	320 to 330 °C	
Mold Temperature	135 to 150 °C	

Notes

Typical properties: these are not to be construed as specifications.

¹ Conditioned data is meant to simulate 23°C 50% RH equilibrium values. Conditioning of specimens was achieved per ISO 1110 by exposing specimens for 11 days, 70°C and 62% RH. ² 95% RH, 48 hr

www.syensqo.com

Safety Data Sheets (SDS) are available by emailing us or contacting your sales representative. Always consult the appropriate SDS before using any of our products.

Neither Syensqo nor any of its affiliates makes any warranty, express or implied, including merchantability or fitness for use, or accepts any liability in connection with this product; related information or its use. Some applications of which Syensqo's products may be proposed to be used are regulated or restricted by applicable laws and regulations or by national or international standards and in some cases by Syensqo's recommendation, including applications of food/feed, water treatment, medical, pharmaceuticals, and personal care. Only products designated as part of the Solviva® family of biomaterials may be considered as candidates for use in implantable medical devices. The user alone must finally determine suitability of any information or products for any contemplated use in compliance with applicable law, the manner of use and whether any patents are infinged. The information and the products are for use by technically skilled persons at their own discretion and risk and does not relate to the use of this product in combination with any other substance or any other process. This is not a license under any patent or other proprietary right.

SYENSQO

All trademarks and registered trademarks are property of the companies that comprise the Syensqo or their respective owners.

© 2024 2023 Syensqo. All rights reserved.