

FORTRON® FX55T1

Polyphenylene sulfide

Fortron® FX55T1 is an unreinforced, impact-modified poly(phenylene sulfide) with high melt viscosity suitable for extrusion.

Product information			
Resin Identification	PPS		ISO 1043
Part Marking Code	>PPS<		ISO 11469
Rheological properties			
Moulding shrinkage, parallel	1.5	%	ISO 294-4, 2577
Moulding shrinkage, normal	1.6	%	ISO 294-4, 2577
Typical mechanical properties			
Tensile modulus	2300	MPa	ISO 527-1/-2
Tensile stress at yield, 50mm/min		MPa	ISO 527-1/-2
Tensile strain at yield, 50mm/min		%	ISO 527-1/-2
Tensile stress at break, 50mm/min	50	MPa	ISO 527-1/-2
Tensile strain at break, 50mm/min	40	%	ISO 527-1/-2
Flexural modulus	2280	MPa	ISO 178
Flexural stress at 3.5%		MPa	ISO 178
Charpy impact strength, 23°C		kJ/m²	ISO 179/1eU
Charpy notched impact strength, 23°C		kJ/m²	ISO 179/1eA
Charpy notched impact strength, -30 °C	35 0.39 ^[C]	kJ/m²	ISO 179/1eA
Poisson's ratio	0.39		
[C]: Calculated			
Thermal properties			
Melting temperature, 10°C/min	280	°C	ISO 11357-1/-3
Temperature of deflection under load, 1.8 MPa	100		ISO 75-1/-2
Vicat softening temperature, 50°C/h 50N	160		ISO 306
Vicat softening temperature, 50°C/h 10N	270		ISO 306
Coefficient of linear thermal expansion (CLTE), parallel	80	E-6/K	ISO 11359-1/-2
Coefficient of linear thermal expansion (CLTE),	95	E-6/K	ISO 11359-1/-2
normal	33	L-0/IX	100 11009-1/-2
Thermal conductivity, flow	0.319 ^[OT]	W/(m K)	ISO 22007-2
Thermal conductivity, through plane	0.314 ^[OT]		ISO 22007-2
Effective thermal diffusivity, flow	1.7E-7 ^[OT]		ISO 22007-4
Effective thermal diffusivity, through plane	1.67E-7 ^[OT]		ISO 22007-4
Specific heat capacity of melt	1500 ^[OT]	J/(kg K)	ISO 22007-4
[OT]: One time tested			
Flammability			
Glow Wire Ignition Temperature, 0.75mm	850	°C	IEC 60695-2-13

Printed: 2024-09-05 Page: 1 of 2

Revised: 2024-06-13 Source: Celanese Materials Database

FORTRON® FX55T1

Polyphenylene sulfide

Physical/Other properties

Density 1250 kg/m³ ISO 1183

Injection

Drying Recommended	yes	
Drying Temperature	130	°C
Drying Time, Dehumidified Dryer	2 - 4	h
Processing Moisture Content	≤0.02	%
Melt Temperature Optimum	330	°C
Min. melt temperature	310	°C
Max. melt temperature	340	°C
Screw tangential speed	0.2 - 0.3	m/s
Mold Temperature Optimum	150	°C
Min. mould temperature	140	°C
Max. mould temperature	160	°C
Hold pressure range	30 - 70	MPa
Back pressure	3.5	MPa

Additional information

Injection molding Processing

Drying - alternate 80°C, approx. 6 hours

Processing Notes Pre-Drying

Fortron® should in principle be predried. Because of the necessary low maximum residual moisture content, the use of dry air dryers is recommended. The dew point should be < -30 °C. The time between drying and processing should be as short as possible.

Printed: 2024-09-05 Page: 2 of 2

Revised: 2024-06-13 Source: Celanese Materials Database

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colourants or other additives may cause significant variations in data values. Properties of moulded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design conditions and environmental exposure. Other than those products expressly identified as medical grade (including by MT® product designation or otherwise), Celanese's products are not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any equipment, processing technique or material mentioned in this publication should satisfy themselves that they can meet all applicable safety and health standards. We strongly recommend that users seek and adhere to the manufac

© 2024 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC. KEPITAL is a registered trademark of Korea Engineering Plastics Company, Ltd.