

FORTRON® 9141L4

Polyphenylene sulfide

Fortron 9141L4 is a 40% glass-reinforced PPS that has excellent heat and chemical resistance, inherently flame-retardant, high hardness and a good balance of strength and stiffness. This grade exhibits low flash and is typically used in applications with thicker walls and shorter flow lengths.

Product information

1 Toddet information			
Resin Identification	PPS-GF40		ISO 1043
Part Marking Code	>PPS-GF40<		ISO 11469
Rheological properties			
Moulding shrinkage range, parallel	0.2 - 0.6	%	ISO 294-4, 2577
Moulding shrinkage range, normal	0.4 - 0.6	%	ISO 294-4, 2577
-			
Typical mechanical properties			
Tensile modulus	15500		ISO 527-1/-2
Tensile stress at break, 5mm/min		MPa	ISO 527-1/-2
Tensile strain at break, 5mm/min	1.9		ISO 527-1/-2
Flexural modulus	14800		ISO 178
Flexural strength		MPa	ISO 178
Charpy impact strength, 23°C		kJ/m²	ISO 179/1eU
Charpy impact strength, -30°C		kJ/m²	ISO 179/1eU
Charpy notched impact strength, 23°C		kJ/m²	ISO 179/1eA
Charpy notched impact strength, -30°C		kJ/m²	ISO 179/1eA
Poisson's ratio	0.33 ^[C]		
[C]: Calculated			
Thormal proportion			
Thermal properties			
Melting temperature, 10°C/min	280		ISO 11357-1/-3
Glass transition temperature, 10°C/min		°C	ISO 11357-1/-3
Temperature of deflection under load, 1.8 MPa	270	°C	ISO 75-1/-2
Flammability			
•	\/ O		IEO 0000E 44 40
Burning Behav. at 1.5mm nom. thickn.		class	IEC 60695-11-10
Thickness tested		mm	IEC 60695-11-10
Burning Behav. at thickness h		class	IEC 60695-11-10
Thickness tested	0.38	mm	IEC 60695-11-10
Physical/Other properties			
Water absorption, 2mm	0.02	0/_	Sim. to ISO 62
Density		kg/m ³	ISO 1183
Density	1030	Ng/III	100 1100
Injection			
Drying Recommended	yes		
Drying Temperature	130	°C	
Drying Time, Dehumidified Dryer	2 - 4		
Processing Moisture Content	≤0.02		
Melt Temperature Optimum	330		

Printed: 2024-09-05 Page: 1 of 2

Revised: 2024-06-13 Source: Celanese Materials Database

FORTRON® 9141L4

Polyphenylene sulfide

Min. melt temperature	310	°C
Max. melt temperature	340	°C
Screw tangential speed	0.2 - 0.3	m/s
Mold Temperature Optimum	150	°C
Min. mould temperature	140	°C
Max. mould temperature	160	°C
Hold pressure range	30 - 70	MPa
Back pressure	3	MPa

Characteristics

Additives Release agent

Additional information

Processing Notes

Pre-Drying

FORTRON should in principle be predried. Because of the necessary low maximum residual moisture content the use of dry air dryers is recommended. The dew point should be =< - 30° C. The time between drying and processing should be as short as possible.

The pre-drying conditions can influence the flow (melt viscosity) of the material significantly. The drying temperature can be subject of optimization for flow of the material depending on the injection molding process and the tool- or part design.

Storage

For subsequent storage the material should be stored dry in the dryer until processed (<= 60 h).

Printed: 2024-09-05 Page: 2 of 2

Revised: 2024-06-13 Source: Celanese Materials Database

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colourants or other additives may cause significant variations in data values. Properties of moulded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design conditions and environmental exposure. Other than those products expressly identified as medical grade (including by MT® product designation or otherwise), Celanese's products are not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any equipment, processing technique or material mentioned in this publication should satisfy themselves that they can meet all applicable safety and health standards. We strongly recommend that users seek and adhere to the manufac

© 2024 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC. KEPITAL is a registered trademark of Korea Engineering Plastics Company, Ltd.